

Tyrokeradines A and B, new bromotyrosine alkaloids with an imidazolyl-quinolinone moiety from a Verongid sponge

Hiroya Mukai^a, Takaaki Kubota^a, Kazuki Aoyama^b, Yuzuru Mikami^b, Jane Fromont^c, Jun'ichi Kobayashi^{a,*}

^a Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

^b Medical Mycology Research Center, Chiba University, Chiba 260-0856, Japan

^c Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia

ARTICLE INFO

Article history:

Received 11 December 2008

Revised 15 January 2009

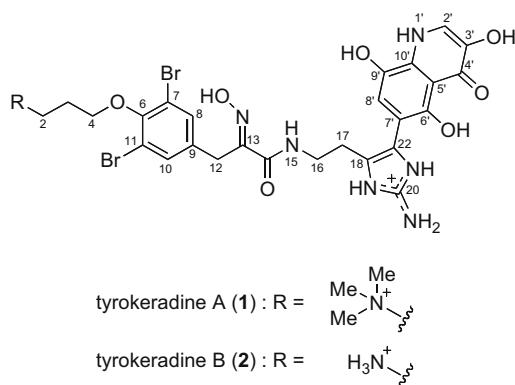
Accepted 16 January 2009

Available online 23 January 2009

ABSTRACT

Two new bromotyrosine alkaloids, tyrokeradines A (**1**) and B (**2**), with an imidazolyl-quinolinone moiety have been isolated from an Okinawan marine sponge of the order Verongida. The structures of **1** and **2** were elucidated on the basis of spectroscopic data.

© 2009 Elsevier Ltd. All rights reserved.


Keywords:

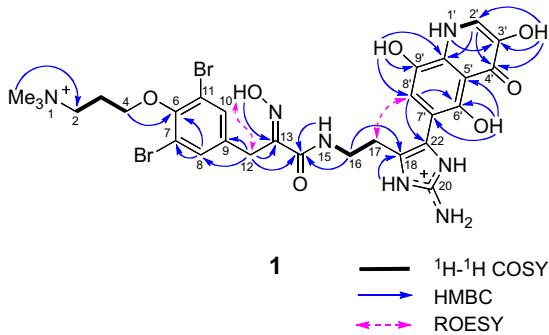
Verongid sponge

Bromotyrosine alkaloids

Tyrokeradines A and B

Marine sponges of the order Verongida have been found to contain a number of bromotyrosine alkaloids.¹ In our search for bioactive substances from marine sponges,² a series of bromotyrosine alkaloids have been isolated from a Verongid marine sponges such as *Pseudoceratina* (= *Psammoplysilla*) *purea*³ and *Suberea* sp.⁴ Recently, we have investigated extracts of an Okinawan Verongid sponge (SS-301) and isolated two new bromotyrosine alkaloids, tyrokeradines A (**1**) and B (**2**), with an imidazolyl-quinolinone moiety. Here we describe the isolation and structure elucidation of **1** and **2**.

The sponge of the order Verongida (SS-301) collected off Kerama Islands, Okinawa, was extracted with MeOH. BuOH-soluble materials of the extract were subjected to a C₁₈ column chromatography followed by C₁₈ HPLC to yield tyrokeradines A (**1**, 0.00052%, wet weight)⁵ and B (**2**, 0.000016%).⁶


Tyrokeradine A (**1**) was obtained as a dark red-purple amorphous solid. The ESIMS spectrum of **1** showed the pseudomolecular ion peaks at *m/z* 750, 752, 754 [(M-H)⁺, (1:2:1)], indicating the presence of two bromine atoms, and the molecular formula of **1** was revealed to be C₂₉H₃₅N₇O₇⁷⁹Br₁⁸¹Br₁ by HRESIMS data. The UV absorption [λ_{max} 281 nm (ϵ 2500)] was attributed to a substituted benzenoid chromophor,⁴ while IR absorptions indicated the existence of OH and/or NH (3470 cm⁻¹) and carbonyl (1690 cm⁻¹) functionalities. The ¹H and ¹³C NMR data (Table 1) disclosed that **1** consists of two carbonyls, 14 sp² quaternary carbons, four sp² methine, six sp³ methylenes, and three N-methyls.

The structure of tyrokeradine A (**1**) was elucidated by detailed analysis of 2D NMR spectra (Fig. 1). Analyses of the ¹H-¹H COSY and HMQC spectra disclosed three structural fragments, C-2 to C-4, N-15 to C-17, and N-1' to C-2'. HMBC correlations for N-methyl protons to C-2 revealed that an *N,N,N*-trimethylpropyl amine moiety (N-1, C-2 to C-4) was located at a terminal in **1**. HMBC correlations for H-12 to C-9, C-8(10), H-8(10) to C-7(11) and C-6 indicated the presence of 1,3,4,5-tetrasubstituted benzene ring, which was ascribed to a 3,5-dibromo-benzyl moiety (C-6 to C-12) from a comparison of ¹³C NMR data of **1** with those of known bromotyrosine alkaloids.^{7,8} The connectivity of *N,N,N*-trimethylpropyl-amino moiety (N-1, C-2 to C-4) and a 3,5-dibromo-benzyl moiety (C-6 to C-12) at C-4 and C-6 via O-5 was implied by an HMBC cross-peak

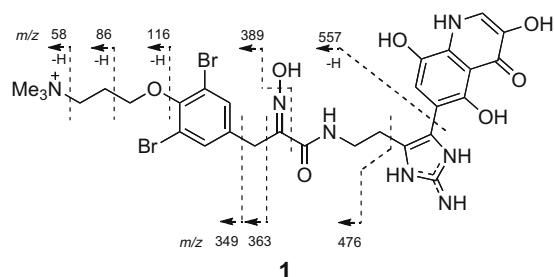

* Corresponding author. Tel.: +81 11 706 3239; fax: +81 11 706 4989.
E-mail address: jkobay@pharm.hokudai.ac.jp (J. Kobayashi).

Table 1¹H and ¹³C NMR data of tyrokeradines A (**1**) and B (**2**) in DMSO-*d*₆

Tyrokeradine A (1)			Tyrokeradine B (2)		
Positn.	δ_{H}	δ_{C}	Positn.	δ_{H}	δ_{C}
1-Me ₃	3.11 (9H, s)	52.3	1	7.88 (3H, brs)	
2	3.59 (2H, t 7.3)	63.1	2	3.04 (2H, brt 6.6)	36.5
3	2.22 (2H, m)	23.4	3	2.05 (2H, m)	27.9
4	3.96 (2H, t 5.4)	70.0	4	3.96 (2H, t 5.8)	70.4
6		150.2	6		150.5
7(11)		117.0	7(11)		117.2
8(10)	7.42 (2H, s)	132.8	8(10)	7.41 (2H, s)	133.0
9		136.5	9		136.5
12	3.66 (2H, s)	27.8	12	3.66 (2H, s)	27.7
13		150.4	13		150.7
13-NOH	11.98 (1H, s)		13-NOH	11.98 (1H, s)	
14		163.0	14		163.1
15	8.10 (1H, brt 5.7)		15	8.07 (1H, brt 5.7)	
16	3.34 (2H, dt)	37.8	16	3.36 (2H, dt)	38.0
17	2.71 (2H, t 7.2)	24.3	17	2.71 (2H, t 7.1)	24.4
18		120.1	18		120.4
19	12.05 (1H, brs)		19	12.09 (1H, brs)	
20		146.5	20		146.5
21	12.28 (1H, brs)		21	12.36 (1H, brs)	
22		118.5	22		118.7
20-NH ₂	7.30 (2H, s)		20-NH ₂	7.39 (2H, s)	
1'	11.73 (1H, d 5.8)		1'	11.73 (1H, d 5.8)	
2'	7.66 (1H, d 5.8)	124.1	2'	7.66 (1H, d 5.8)	124.2
3'		139.7	3'		139.9
3'-OH	8.92 (1H, s)		3'-OH	8.92 (1H, s)	
4'		173.1	4'		173.3
5'		112.5	5'		112.6
6'		149.1	6'		149.5
6'-OH	14.32 (1H, s)		6'-OH	14.28 (1H, s)	
7'		103.1	7'		103.2
8'	6.91 (1H, s)	113.9	8'	6.85 (1H, s)	114.1
9'		137.3	9'		137.3
9'-OH	10.30 (1H, s)		9'-OH	10.30 (1H, s)	
10'		128.9	10'		129.1

Figure 1. Selected 2D NMR correlations for tyrokeradine A (**1**).

of H-4 to C-6. HMBC correlations for H-12 to C-13 and C-14, 13-NOH to C-13, H-15 to C-14, and H-16 to C-14 revealed the presence of an α -ketoxime moiety (C-13, 13-NOH, and C-14) and connectivities of C-12 to C-13 and C-14 to N-15. The ROESY correlation between 13-NOH and H-12 suggested that the oxime had *E* geometry. The existence of a trihydroxy quinolinone ring (N-1', C-2' to C-10') was deduced from ²J_{CH} and ³J_{CH} correlations from three hydroxy protons (3'-OH, 6'-OH, and 9'-OH) observed in the HMBC spectrum of **1** in addition to cross-peaks of H-1' to C-3', H-2' to C-4' and C-10', and H-8' to C-6'. Furthermore, HMBC correlations for H-19 to C-18 and H-8' to C-22, and a ROESY correlation between H-17 and H-8' suggested that C-17 and C-7' were connected to C-18 and C-22 in an amino imidazole ring (C-18, N-19, C-20, N-21, C-22, and 20-NH₂).^{7,8} respectively. The fragmentation patterns observed in the ESIMS/MS spectrum supported the structure of tyrokeradine A (**1**) elucidated from 2D NMR data (Fig. 2). Thus, the structure of tyrokeradine A was concluded to be **1**.

Figure 2. Fragmentation patterns observed in positive ion ESIMS/MS spectrum of tyrokeradine A (**1**) [precursor ion, *m/z* 750 (M-H)⁺].

Tyrokeradine B (**2**) was obtained as a dark green amorphous solid. The molecular formula of **2** was established as C₂₆H₂₈O₇N₇⁷⁹Br₁⁸¹Br₁ by HRESIMS data. The ¹H and ¹³C NMR data (Table 1) were close to those of tyrokeradine A (**1**), except for lack of signals due to N-methyl groups in **1** and presence of a signal due to an amino group [δ_{H} 7.88 (3H, brs)]. Analysis of the 2D NMR data of **2** disclosed that a terminal of **2** is an amino group in place of trimethyl amino group of **1**. Thus, the structure of tyrokeradine B was concluded to be **2**.

Tyrokeradines A (**1**) and B (**2**) are rare bromotyrosine alkaloids possessing an imidazolyl-quinolinone moiety.⁹ Tyrokeradine B (**2**) showed inhibitory activity against *Micrococcus luteus*, *Staphylococcus aureus*, and *Trichophyton mentagrophytes* (MIC, 25.0 μ g/mL, each), and *Cryptococcus neoformans*, *Candida albicans*, and *Aspergillus niger* (MIC, 12.5 μ g/mL, each), while tyrokeradines A (**1**) did not show such activity (MIC, >25.0 μ g/mL, each).

Acknowledgments

We thank Mr. Z. Nagahama for his help with sponge collection, and Ms. S. Oka, Center for Instrumental Analysis, Hokkaido University, for measurements of ESIMS and ESIMS/MS. This work was supported by Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and notes

- (a) Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. *Nat. Prod. Rep.* **2008**, *25*, 35–94; Peng, J.; Li, J.; Hamann, M. T. In *The Alkaloid*; Cordell, G. A., Ed.; Academic Press: New York, 2005; Vol. 61, pp 59–262 (and references therein).
- Kubota, T.; Araki, A.; Ito, J.; Mikami, Y.; Fromont, J.; Kobayashi, J. *Tetrahedron* **2008**, *64*, 10810–10813.
- Kobayashi, J.; Honma, K.; Sasaki, T.; Tsuda, M. *Chem. Pharm. Bull.* **1995**, *43*, 403–407 (and references therein).
- Hirano, K.; Kubota, T.; Tsuda, M.; Watanabe, K.; Fromont, J.; Kobayashi, J. *Tetrahedron* **2000**, *56*, 8107–8110.
- Tyrokeradine A (**1**): dark red-purple amorphous solid; UV (MeOH) λ_{max} 207 (ϵ 16800), 281 (2500), 369 (900), 553 (800) nm; IR (KBr) ν_{max} 3470 (br), 1690, 1540, 1460, 1200, 1140, 1020, 1000, 840, 720 cm^{-1} ; ^1H and ^{13}C NMR, see Table 1; ESIMS m/z 750, 752, 754 [(M-H) $^+$, 1:2:1]; HRESIMS m/z 752.0832 [(M-H) $^+$, Δ –3.4 mmu], calcd for $\text{C}_{29}\text{H}_{34}\text{N}_7\text{O}_7^{79}\text{Br}_1^{81}\text{Br}_1$, 752.0866.
- Tyrokeradine B (**2**): dark green amorphous solid; UV (MeOH) λ_{max} 206 (ϵ 27300), 279 (5600), 368 (1700), 608 (700) nm; IR (KBr) ν_{max} 3420 (br), 2920, 1680, 1540, 1460, 1200, 1140, 1000, 840, 720 cm^{-1} ; ^1H and ^{13}C NMR, see Table 1; ESIMS m/z 708, 710, 712 [(M-H) $^+$, 1:2:1]; HRESIMS m/z 710.0363 [(M-H) $^+$, Δ –3.4 mmu], calcd for $\text{C}_{26}\text{H}_{28}\text{O}_7\text{N}_7^{79}\text{Br}_1^{81}\text{Br}_1$, 710.0397.
- Nakamura, H.; Wu, H.; Kobayashi, J.; Nakamura, Y.; Ohizumi, Y.; Hirata, Y. *Tetrahedron Lett.* **1985**, *26*, 4517–4520.
- Ishibashi, M.; Tsuda, M.; Ohizumi, Y.; Sasaki, T.; Kobayashi, J. *Experientia* **1991**, *47*, 299–300.
- Nicholas, G. M.; Newton, G. L.; Fahey, R. C.; Bewley, C. A. *Org. Lett.* **2001**, *3*, 1543–1545.